PPL - Privileges

3km Vis. In sight of surface. 10km for SVFR. NO IFR in Class D

PPL –IMC Privileges

IFR in Class D and E. Can fly in Cloud 3km for SVFR. **T/O**, 1800m - 600ft Cloud Base. **Ldg**, 1800m Vis,

DA – <u>Precision</u> + 50pec <u>+200ft</u> OR 500 + Threshold

MDA – <u>Non Precision</u> +200ft OR 600 + Threshold

<u>MSA</u>1000` above highest point within 5 miles.

Quadrantals above 3000`

000° to 089° = ODD 090° to 179° = ODD + 500 180° to 269° = EVEN 270° to 359° = EVEN + 500

IMC Tolerances

± 100ft Altitude ± 10° Heading ± 5° VOR - ± 10° NDB MDA +50ft – 0ft Speed within 10kts

ADF Tracking

Req **More** <u>QDM</u> = Steer **Less** Req **Less** <u>QDM</u> = Steer **More**

Req **More** <u>QDR</u> = Steer **More** Req **Less** <u>QDR</u> = Steer **Less**

Less is to the Left More is to the Right

Before Initial Approach ATIS

Altimeter QNH Approach How Long How Low Which Way Avionics, Set Up, IDENT Airspeed – for Approach.

Right hand hold Subtract Left hand hold Add

<u>Abeam</u> \pm 90° to Outbound Heading

<u>Wind Gate</u> & <u>Offset Entry</u> ± 30° to Outbound Heading

± 30 to Outbound Heading

Radial / Outbound Heading determines which type of entry to the hold.

VOR Hold

60° to go you should be 10° off track (CDI Needle should move)

ADF Hold

 90° to go = 75° to Inbound **60°** to go = Inbound Hdg (due to ADF dip.)

On all holds use **2 X Drift** on Outbound.

Use 1x Single Drift on Inbound

Final Approach Fix

Time – Start timer Turn – Final Approach Course Twist – OBS and DI to Course Throttle – Reduce power Talk – To Tower Tyres – Landing Gear Down

Enroute Wind Correction Angle

For practical purposes assume max drift is at 60° to track.

For each 10kt of Wind

TAS 60 Kt = 10° max drift TAS 90 Kt = 6° max drift TAS 100 kt = 6° max drift TAS 120 kt = 5° max drift TAS 150 kt = 4° max drift

Head / Tail Wind Component

30° off = 9/1045° off = 3/460° off = 1/275° Off = 1/490° off = Nil

To regain track. **Double** the degrees off track and **add** the wind correction.

If **more than 3 minutes** from station. Use minimum of 30°

Divide the altitude to lose (in Flight Levels) by 3 to determine NM distance to start a 3° descent

 $\frac{\text{NM} = \frac{\text{Flight Level to lose}}{3}}{\text{ADF Flying} - 1^{\circ} \text{ deviation of}}$

the ADF needle is equal to 100ft per NM

Timed Turns

360° = 2 Mins 180° = 1 Min 90° = 30 Secs 30° = 10 Secs

To make a **6° change** in heading, use a rate 1 turn then immediately level the wings.

To make a **3° change** in heading use $\frac{1}{2}$ a rate 1 turn.

VOR Reception Distance

l,000ft = 40nm
2,000ft = 55nm
3,000ft = 70nm
1,000ft = 80nm
5,000ft = 90nm
10,000ft = 125nm

Compass Errors UNOS and ANDS

Undershoot North Overshoot South

Accelerate North Decelerate South

VMC Minima

Airspace Class F & G

>3000ft - 1500m, Clear of Cloud >FL100 - 5000m, 1000ft from Cloud <FL100 - 8000m, 1.5Km Horizontal, 1000 Vertically

Airspace Class D

>3000ft - 8000m, Clear of Cloud, In sight of surface >FL100 - 5000m, 1.5Km Horizontal, 1000 Vertically <FL100 - 8000m, 1.5Km Horizontal, 1000 Vertically

10/20 Rule. A headwind of 10% takeoff speed will reduce ground roll by 20%

10/20 Rule. A 10% change in aircraft weight will result in a 20% change in takeoff distance.

10/20 Rule. A 10% change in airspeed will cause a 20% change in stopping distance.

Abort the takeoff if 70% of takeoff speed is not reached within 50% of the available runway.

TAS increase 2% for each 1000' in a climb.

TAS = IAS (kts) + $\frac{FL}{2}$

Best Cruise climb speed is the difference between Vx and Vy and add this to Vy.

For maximum TAS and Range, Load the airplane as close to the aft Centre of Gravity limit as allowable.

Enroute Wind Correction

Angle For practical purposes assume max drift is at 60° to track

WCA (max) <u>= Wind Velocity</u> NM per minute

Maximum drift is when the wind is 90° to the track. For practical purposes assume max drift is at 60° to track.

Standard Closing Angle.

<u>60</u> = Angle to regain track NM / Minute

 TAS
 NM/Min
 SCA
 *SCA

 90
 1.5
 40°
 20°

 120
 2
 30°
 3

 180
 3
 20°
 3

-Fly for **1 min for every mile** off track.

-Add 10 Secs to ETA for every minute flown to regain track

-*SCA Fly 2 mins for every mile

A 3° Rate of Descent (ROD) = 5 x groundspeed.

Add 1 minute to your flight plan for every 1000' climb to cruise altitude.

A slippery or wet runway may increase your landing distance by 50%.

Plan to touchdown in the first $\frac{1}{3}$ of the runway or go around.

For each knot of airspeed above Vref over the numbers, the touchdown point will be 100ft further down the runway.

Weight & Balance – An airplane will be more stable and stall at a higher airspeed with a forward CG location.

Weight & Balance – An airplane will be less stable and stall at a lower airspeed with an aft CG location. **Density Altitude** increases or decreases 120ft for each 1°C that varies from ISA DA = PA + 120 (OAT – ISA)

Maximum **Glidespeed** = Minimum **Drag** = Maximum **Endurance**, remember this if low on fuel.

Most structural **icing** occurs between 0° to -10°

Difference in Dew point and temperature x 400ft is where you will find visible moisture. i.e. cloud base.

Engine Failure Drill

A = Airspeed – Achieve the best <u>glide speed</u> first.

B = Best Field – Find the best place to make an emergency landing.

C = **Checklist** – Go through the checklist to <u>restart</u> or secure the aircraft.

D = Distress – Make a Mayday call, 7700 on Transponder

E = Evacuation – Fuel off, doors open, Master off. Seatbelts tight.

> Heading Altitude

Time

FREDA Check

Fuel, Enough for trip, Change or balance tanks.

Radio, Next radio frequency, and radio nav frequency.

Engine, Check Temperature, Pressures, Suction, Ammeter, Carb Heat, Mixture.

DI, Sync DI with compass.

Altitude, Altimeter setting, Airspace, Outside Air Temperature.

Light Signals

To AirSteady RedGive WayRed FlashesDo Not LandGreen FlashesReturn for LandingSteady GreenYou may LandWhite FlashesLand after steadygreenYou may Land

To Ground Steady Red

Red FlashesClear Landing AreaGreen FlashesCleared to TaxiSteady GreenCleared to Take OffWhite FlashesReturn to Start Point

Stop

Strobes, On.

Pitot Heat, On. and note outside temperature

Lights, On.

Ice, Check ice on wings.

Transponder, to ALT.

Time, Start timer or turn off and then ON the ADF to reset Fight Time.

